46 research outputs found

    Experimental Quantum Imaging exploiting multi-mode spatial correlation of twin beams

    Full text link
    Properties of quantum states have disclosed new and revolutionary technologies, ranging from quantum information to quantum imaging. This last field is addressed to overcome limits of classical imaging by exploiting specific properties of quantum states of light. One of the most interesting proposed scheme exploits spatial quantum correlations between twin beams for realizing sub-shot-noise imaging of the weak absorbing objects, leading ideally to a noise-free imaging. Here we discuss in detail the experimental realization of this scheme, showing its capability to reach a larger signal to noise ratio with respect to classical imaging methods and, therefore, its interest for future practical applications

    Quantum Enhanced Imaging of Non-Uniform Refractive Profiles

    Get PDF
    In this work quantum metrology techniques are applied to the imaging of objects with a non-uniform refractive spatial profile. A sensible improvement on the classical accuracy is shown to be found when the "Twin Beam State" (TWB) is used. In particular exploiting the multimode spatial correlation, naturally produced in the Parametric Down Conversion (PDC) process, allows a 2D reconstruction of complex spatial profiles, thus enabling an enhanced imaging. The idea is to use one of the spatially multimode beam to probe the sample and the other as a reference to reduce the noise. A similar model can be also used to describe wave front distortion measurements. The model is meant to be followed by a first experimental demonstration of such enhanced measurement scheme

    Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams

    Get PDF
    Loss measurements are at the base of spectroscopy and imaging, thus perme- ating all the branches of science, from chemistry and biology to physics and material science. However, quantum mechanics laws set the ultimate limit to the sensitivity, constrained by the probe mean energy. This can be the main source of uncertainty, for example when dealing with delicate system such as biological samples or photosensitive chemicals. It turns out that ordinary (clas- sical) probe beams, namely with Poissonian photon number distribution, are fundamentally inadequate to measure small losses with the highest sensitivity. Conversely, we demonstrate that a quantum-correlated pair of beams, known as twin-beam state, allows reaching the ultimate sensitivity for all energy regimes (even less than one photon per mode) with the simplest measurement strategy. One beam of the pair addresses the sample, while the second one is used as a reference to compensate both for classical drifts and for uctuation at the most fundamental quantum level. This scheme is also absolute and accurate, since it self-compensates for unavoidable instability of the sources and detectors, which could otherwise lead to strongly biased results. Moreover, we report the best sensitivity per photon ever achieved in loss estimation experiments

    Realisation of the first sub shot noise wide field microscope

    Full text link
    In the last years several proof of principle experiments have demonstrated the advantages of quantum technologies respect to classical schemes. The present challenge is to overpass the limits of proof of principle demonstrations to approach real applications. This letter presents such an achievement in the field of quantum enhanced imaging. In particular, we describe the realization of a sub-shot noise wide field microscope based on spatially multi-mode non-classical photon number correlations in twin beams. The microscope produces real time images of 8000 pixels at full resolution, for (500micrometers)2 field-of-view, with noise reduced to the 80% of the shot noise level (for each pixel), suitable for absorption imaging of complex structures. By fast post-elaboration, specifically applying a quantum enhanced median filter, the noise can be further reduced (less than 30% of the shot noise level) by setting a trade-off with the resolution, demonstrating the best sensitivity per incident photon ever achieved in absorption microscopy.Comment: Light: Science & Applications- Nature in pres

    Quantum differential ghost microscopy

    Full text link
    Quantum correlations become formidable tools for beating classical capacities of measurement. Preserving these advantages in practical systems, where experimental imperfections are unavoidable, is a challenge of the utmost importance. Here we propose and realize a quantum ghost imaging protocol able to compensate for the detrimental effect of detection noise and losses. This represents an important improvement as quantum correlations allow low brightness imaging, desirable for reducing the absorption dose. In particular, we develop a comprehensive model starting from a ghost imaging scheme elaborated for bright thermal light, known as differential ghost imaging and particularly suitable in the relevant case of faint or sparse objects. We perform the experiment using SPDC light in microscopic configuration. The image is reconstructed exploiting non-classical intensity correlation rather than photon pairs detection coincidences. On one side we validate the theoretical model and on the other we show the applicability of this technique by reconstructing a biological object with 5 micrometers resolution

    Photon number correlation for quantum enhanced imaging and sensing

    Full text link
    In this review we present the potentialities and the achievements of the use of non-classical photon number correlations in twin beams (TWB) states for many applications, ranging from imaging to metrology. Photon number correlations in the quantum regime are easy to be produced and are rather robust against unavoidable experimental losses, and noise in some cases, if compared to the entanglement, where loosing one photon can completely compromise the state and its exploitable advantage. Here, we will focus on quantum enhanced protocols in which only phase-insensitive intensity measurements (photon number counting) are performed, which allow probing transmission/absorption properties of a system, leading for example to innovative target detection schemes in a strong background. In this framework, one of the advantages is that the sources experimentally available emit a wide number of pairwise correlated modes, which can be intercepted and exploited separately, for example by many pixels of a camera, providing a parallelism, essential in several applications, like wide field sub-shot-noise imaging and quantum enhanced ghost imaging. Finally, non-classical correlation enables new possibilities in quantum radiometry, e.g. the possibility of absolute calibration of a spatial resolving detector from the on-off- single photon regime to the linear regime, in the same setup

    Improving interferometers by quantum light: toward testing quantum gravity on an optical bench

    Get PDF
    We analyze in detail a system of two interferometers aimed at the detection of extremely faint phase uctuations. The idea behind is that a correlated phase-signal like the one predicted by some phenomenological theory of Quantum Gravity (QG) could emerge by correlating the output ports of the interferometers, even when in the single interferometer it confounds with the background. We demonstrated that injecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot-noise, enhancing the resolution in the phase-correlation estimation. Our results conrms the benet of using squeezed beams together with strong coherent beams in interferometry, even in this correlated case. On the other hand, our results concerning the possible use of photon number entanglement in twin beam state pave the way to interesting and probably unexplored areas of application of bipartite entanglement and, in particular, the possibility of reaching surprising uncertainty reduction exploiting new interferometric congurations, as in the case of the system described here
    corecore